Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A light emitting diode (LED) based spatial frequency domain imaging system for optimization of photodynamic therapy of nonmelanoma skin cancer: quantitative reflectance imaging.

BACKGROUND Photodynamic therapy (PDT) offers the potential for enhanced treatment of nonmelanoma skin cancer (NMSC) with minimal scarring. Yet, PDT has not achieved consistent long term effectiveness to gain widespread clinical acceptance for treatment of skin cancer. Therapeutic response varies between practitioners, patients and lesions. One important contributing factor is the absence of qua...

متن کامل

Photodynamic therapy for nonmelanoma skin cancer.

Photodynamic therapy (PDT) involves the administration of a photosensitizing drug and its subsequent activation by light at wavelengths matching the absorption spectrum of the photosensitizer. Because the skin is readily accessible to light-based therapies, PDT with systemic and particularly with topical agents has become important in treating cutaneous disorders. Topical PDT is indicated for t...

متن کامل

Combining multispectral polarized light imaging and confocal microscopy for localization of nonmelanoma skin cancer.

Multispectral polarized light imaging (MSPLI) enables rapid inspection of a superficial tissue layer over large surfaces, but does not provide information on cellular microstructure. Confocal microscopy (CM) allows imaging within turbid media with resolution comparable to that of histology, but suffers from a small field of view. In practice, pathologists use microscopes at low and high power t...

متن کامل

High-speed spatial frequency domain imaging with temporally modulated light.

Spatial frequency domain imaging (SFDI) is a wide-field diffuse optical technique used to obtain optical properties and chromophore concentrations in highly scattering media, such as biological tissue. Here, we present a method for rapidly acquiring multispectral SFDI data by modulating each illumination wavelength at a different temporal frequency. In the remitted signal, each wavelength is te...

متن کامل

Visible spatial frequency domain imaging with a digital light microprojector.

There is a need for cost effective, quantitative tissue spectroscopy and imaging systems in clinical diagnostics and pre-clinical biomedical research. A platform that utilizes a commercially available light-emitting diode (LED) based projector, cameras, and scaled Monte Carlo model for calculating tissue optical properties is presented. These components are put together to perform spatial frequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biomedical Optics Express

سال: 2015

ISSN: 2156-7085,2156-7085

DOI: 10.1364/boe.6.001761